The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen.
نویسندگان
چکیده
Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of 14C-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.
منابع مشابه
Ethanolic fermentation: new functions for an old pathway.
Ethanolic fermentation is an ancient metabolic pathway. In plants, it is a major route of ATP production under anaerobic conditions. In addition, recent developments suggest that the pathway has important functions in the presence of oxygen. Both of the enzymes required for the production of acetaldehyde and ethanol, pyruvate decarboxylase and alcohol dehydrogenase, are highly abundant in polle...
متن کاملPollen tube growth: where does the energy come from?
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mit...
متن کاملPyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because...
متن کاملAnoxia tolerance in tobacco roots: effect of overexpression of pyruvate decarboxylase
Plant survival during flooding relies on ethanolic fermentation for energy production. The available literature indicates that the first enzyme of the ethanolic fermentation pathway, pyruvate decarboxylase (PDC), is expressed at very low levels and is likely to be rate-limiting during oxygen deprivation. The authors expressed high levels of bacterial PDC in tobacco to study the modulation of PD...
متن کاملBiosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency
Background: Nanoparticles have been applied to medicine, hygiene, pharmacy and dentistry, and will bring significant advances in the prevention, diagnosis, drug delivery and treatment of disease. Green synthesis of metal nanoparticles has a very important role in nanobiotechnology, allowing production of non-toxic and eco-friendly particles.Objectives: Gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2002